
CGI2014 manuscript No.
(will be inserted by the editor)

Optimal Acceleration Thresholds for Nonholonomic Agents

Brian C. Ricks · Parris K. Egbert

Abstract Finding optimal trajectories for non-acceler-

ating, nonholonomic agents is a well understood prob-

lem. However, in video games, robotics, and crowd sim-

ulations nonholonomic agents start and stop frequently.

With the vision of improving crowd simulation, we find

optimal paths for virtual agents accelerating from a

standstill. These paths are designed for the “ideal”, ini-

tial stage of planning when obstacles are ignored. We

analytically derive paths and arrival times using arbi-

trary acceleration angle thresholds. We use these paths

and arrival times to find an agent’s optimal ideal path.

We then numerically calculate the decision surface that

can be used by an application at run-time to quickly

choose the optimal path. Finally we use quantitative

error analysis to validate the accuracy of our approach.

Keywords Nonholonomic agents · Optimization ·
Crowd simulation

1 Introduction

The fields of computer games, robotics, and simula-

tion often use point-based, virtual agents to represent

real entities. Frequently, these agents are nonholonomic,

meaning they accelerate in the direction they are facing

(see [2]). For nonholonomic agents that cannot accel-

erate, it has been shown that optimal trajectories are

composed of lines and circular arcs [5].

However, it is non-trivial to find optimal paths for

accelerating nonholonomic agents. Consider the super-

B. Ricks
CCICADA Center, Rutgers University
E-mail: brian.ricks@rutgers.edu

P. Egbert
Brigham Young University
E-mail: egbert@cs.byu.edu

imposed paths in Fig. 1. All agents started at the ori-

gin looking right. The red agent turns in place until it

sees its destination before accelerating. The green agent

turns until there are π/2 radians between it’s heading

and the destination before accelerating. The blue agent

accelerates without turning in place. For this particu-

lar destination, (−8, 0), the green agent arrives first, the

blue agent arrives second, and the red agent arrives last.

However, there exist destinations where the red agent

would be the fastest and others where the blue agent

would be the fastest. As we demonstrate later, there is

no trivial method for choosing the shortest path.

In order to improve nonholonomic agent movement,

we:

1. We derive equations for arrival time and paths for

agents with arbitrary destinations. We do this for

nonholonomic agents starting from a standstill.
2. We present an off-line method for numerically calcu-

lating a decision surface that finds the optimal path

to any destination.

3. We find a close approximation to this surface that

can be used at run time to find the optimal path for

nonholonomic agents.

Fig. 1 Superimposed paths of agents using different accel-
eration angle thresholds. Agents started at the origin (right)
looking right. A threshold of π/2 (green) reaches the desti-
nation first, followed by π (blue), followed by 0 (red, who
reaches the destination 1.33 seconds after the first agent). An
agent with a threshold of ∼2 radians is optimal here for this
destination.

2 Brian C. Ricks, Parris K. Egbert

We provide rigorous validation for these contribu-

tions. Combined, we believe this will lead to meaningful

reductions in agent travel time and computation time

for games, robotics, and crowd simulations.

2 Previous Work

The most relevant previous work in terms of our results

can be divided into three main parts: modeling human

motion, optimal trajectories, and collision avoidance.

2.1 Reproducing Human Trajectories

One branch of virtual agent research finds patterns in

human movement and reproduces them in virtual agents.

The hope is that believable agent motion can be created

by reproducing these patterns. This research includes

studies on how we move our eyes [7], hands [10,7], and

arms [15]. Often it is assumed that humans optimize

their movement over some function [1], including min-

imizing variance [7] or maximize smoothness [15]. Re-

searchers do the same analysis on human trajectories.

Arechavaleta et al. [2] asserted that the movement of

humans can be modeled nonholonomically while mini-

mizing the L2 norm. Hicheur et al. [9] argued that loco-

motion planning is done at a higher level than footstep

planning. Thus they assert that people plan trajectories

first and footfalls second.

This research has an appropriate place in virtual

agent movement, but should not be the sole foundation

for choosing paths for agents. Unlike the human sub-
jects in these studies, virtual agents often start and stop

frequently. Also, nonholonomic agents are also used to

model non-human entities. In such cases, a more generic

model is required.

2.2 Optimal Trajectories

Recognizing the importance of improved trajectories

for nonholonomic agents, researchers have studied path

planning from a mathematical perspective. One of the

key themes in this area is optimizing with respect to an

agent’s arrival time. Researchers have looked at fastest

paths for robots moving at constant speeds. These are

called Dubins paths after the work of Dubin [5]. Cock-

ayne and Hall found the set of all reachable points using

Dubins paths in a fixed amount of time [4]. Soueres and

Laumond have studied how to optimally link any two

configurations [13]. However, similar to previous work,

all agents travel at constant speeds.

Our work deviates from Dubins paths we do not

assume that agents have a constant velocity. On the

contrary, we are interested in the more complex scenario

where agents can accelerate from a standstill. Thus we

seek a more expressive set of proofs and algorithms for

choosing paths for nonholonomic agents.

2.3 Collision Avoidance

A common use of nonholonomic agents is in crowd sim-

ulation and it is related to our current and future work.

Collision avoidance has roots in Reynolds’ [12] in-

stantaneous forces collision avoidance methods. Hel-

bing and Molnár [8] proposed a 2D method called

social forces. Fiorini and Shiller [6] introduced veloc-

ity obstacles and created very believable crowds with

less stalling than when using social forces. This was

further extended by van den Berg et al. [3]. Moving

from velocity-based collision avoidance to accelerations-

based collision avoidance, Ondrej et al. [11] proposed a

synthetic-vision crowd simulation algorithm. They also

assert agents movement can be judged on their arrival

time to destinations. For a survey of this research area

see [14].

Most crowd simulation algorithms avoid collisions

by finding a collision-free velocity for each agent.

When there are multiple options, algorithms choose a

collision-free velocity that is closest to the agent’s ideal

path to its destination. This ideal path is usually the

straightest line from the agent’s current location to the

destination without regard to obstacles. Crowd simula-

tion is highly relevant to this paper since we show that

a straight line from the agent to the destination is not

always the optimal path for agents. Also, since our work

has direct application to crowd simulation, we do cal-

culations in a similar ideal, obstacle-free environment.

3 Problem Definition

A nonholonomic virtual agent’s motion can be defined

using a differential equation:ẋ = v cos θ, ẏ = v sin θ, v̇ =

a. Without loss of generality, we initially place the ori-

gin about our agent, i.e., x0 = y0 = 0 and θ0 = 0. We

also assume that v0 = 0.

Using these values, the initial configuration of

any agent can be uniquely defined by a 5-tuple:

〈Dx, Dy, rm, r
′
m, θ

′
m〉 where Dx and Dy are values of the

destination relative to the agent. (Equally, we use po-

lar coordinates Dr and Dθ to denote the destination.)

Further, rm is the agent’s maximum velocity, r′m is the

agent’s maximum acceleration, and θ′m is the agent’s

rate of rotation. Without loss of generality, we assume

Optimal Acceleration Thresholds for Nonholonomic Agents 3

thatDy is positive, resulting in a counter-clockwise turn

by the agent to reach its destination.

When an agent plans its path, it often starts by

guessing the shortest path without respect to dynamic

obstacles (consider velocity obstacles or social forces).

Our work focuses on this first part of agent path plan-

ning in an ideal, obstacle-free environment. Specifically,

we want to take out the guessing and put in provably

best choice.

The path of an agent to its destination can be

thought of as having three distinct steps. In the first

step the agent turns in place at rate θ′m without any

linear velocity or acceleration. We call this the turn

in place step. Next the agent accelerates linearly while

turning. If the agent reaches its maximum linear ve-

locity rm during this phase, it continues to turn while

moving forward at this velocity. We call this the turning

with velocity step. Lastly, when the agent is looking di-

rectly at its destination, it stops turning and continues

to accelerate (or if it has already reached rm, it contin-

ues at that speed), until it reaches its destination. We

call this the straight motion step.

It is simple for an algorithm to transition an agent

from the turning with velocity step to the straight mo-

tion step: the agent need only stop turning when it faces

the destination.

The moment at which an agent transitions between

the turning in place and turning with velocity steps is

chosen arbitrarily by the underlying motion algorithm.

We call the angle between the agent’s current heading

and the agent’s destination when it transitions between

the first two steps the acceleration angle threshold.

As an example, consider an agent whose destina-

tion is at (Dx, Dy) = (−8, 0) (see the green/thicker

path in Fig. 1). This agent’s acceleration angle thresh-

old is π/2. Thus, the agent will turn in place without

any linear velocity or acceleration until the difference

between its heading and the destination is π/2. This

happens when it is looking down the positive y-axis.

As the agent accelerates and turns, it will move in an

arc toward the destination. When the agent is look-

ing directly at (−8, 0), the agent will stop turning. It

will then proceed with the straight motion step until it

reaches its destination.

The goal of this work is to answer the following

question: Given a nonholonomic agent, how far should

the agent turn in place to reach its destination in the

least amount of time? To help answer this question,

we introduce the function ArrivalT , that gives the

arrival time of an agent based on its choice of ac-

celeration angle threshold. Formally ArrivalT : at ∈
[0, π], Dx, Dy, rm, r

′
m, θ

′
m → t where at is the chosen ac-

celeration angle threshold and t is the amount of time

Fig. 2 Three surface subdivisions for at = π (shown with
θ′m = 1, rm = 1, r′m = 1). The light green and medium
green areas show pre- and post-full velocity destinations re-
spectively. The dark green area in the middle is unreachable
by an infinitely small agent. The solid dark green line shows
the trajectory of the agent up to time t = rm

r′
m

.

it takes an agent to reach its destination using that

threshold. As we discuss later, not all angle thresholds

will reach all destinations, in which case ArrivalT is

t = +∞. We derive ArrivalT in Sections 4 and 5.

We use ArrivalT to find the at that re-

sults in the lowest arrival time (and hence

the optimal path). To do this we use function

BestAT . Formally, BestAT : Dx, Dy, rm, r
′
m, θ

′
m →

at s.t. ∀q ∈ [0, π], ArrivalT (at,Dx, Dy, rm, r
′
m, θ

′
m) ≤

ArrivalT (q,Dx, Dy, rm, r
′
m, θ

′
m). We derive a very

close approximation to BestAT in Section 6.

4 Acceleration Angle Threshold = π

In order to derive the equation for ArrivalT for an arbi-

trary at, we begin by solvingArrivalT when at = π. We

show in the next section that we can derive ArrivalT

for any at with only slight modification to the following

equations.

Setting the acceleration angle threshold to π means

an agent will never turn in place when heading toward

a destination. Instead, since Dθ ≤ π, the agent will

skip the turn in place step and immediately proceed to

the turning with velocity step. The blue agent in Fig. 1

gives an example of paths generated by at = π.

4.1 Three Areas of the Surface

Deriving the equation for ArrivalT for at = π depends

on whether or not an agent reaches full velocity before

transitioning from the turning with velocity step to the

straight motion step. We call destinations that an agent

will look at directly before reaching full velocity pre-full

velocity destinations and destinations that the agent

will not see until after reaching full velocity post-full

velocity destinations. We begin by discussing how to

determine whether a point is a pre- or post-full velocity

destination, then how to find the arrival time to each

of these types of destinations in turn (see Fig. 2).

4 Brian C. Ricks, Parris K. Egbert

Until an agent reaches its maximum velocity, its ac-
celeration is constant at r′m and it will turn at a con-
stant rate of θ′m. Thus, the agent’s velocity at time t is
r′m · t and its heading is θ′m · t. Converting to x and y
velocity:

x′(t) = cos(θ′m · t) · r′m · t, and y′(t) = sin(θ′m · t) · r′m · t
(1)

Taking the definite integral between 0 and t:

x(t) =
cos(θ′

m
·t)

θ′2
m

+
t·sin(θ′

m
·t)

θ′
m

− 1
θ′2
m

y(t) =
sin(θ′

m
·t)

θ′2
m

− t·cos(θ′
m
·t)

θ′
m

(2)

We are interested in the position of the agent when
it reaches its maximum velocity. This happens at time
t = rm

r′m
. We can find the location of the agent when it

reaches its full velocity by replacing t with rm
r′m

in Eq. 2.

We call this point the full velocity point, the x and y
coordinates of which are:

FV X = r′m ·
(

cos(rm
r′m
·θ′
m
)

(θ′2
m
)

+
rm
r′m
·sin(rm

r′m
·θ′
m
)

θ′
m

)
− 1

FV Y = r′m ·
(

sin(rm
r′m
·θ′
m
)

(θ′2
m
)
−

rm
r′m
·cos(rm

r′m
·θ′
m
)

θ′
m

) (3)

In order to determine which destinations are pre- and

post-full velocity destinations, we can think of an agent

walking from the origin to the full velocity point. Ev-

ery point the agent looks at directly is a pre-full veloc-

ity destination. If we draw a line through the agent at

time
θ′m·rm
r′m

parallel to the agent’s heading, it is easy

to prove that all points to the right of that line (or

returning a negative distance) will be pre-velocity des-

tinations. This is true since all these points are visible

to the agent as it moves from the origin to the full ve-

locity point. We thus use this line to segregate pre-full

velocity destinations and post-full velocity destinations.
In order to find this segregating line we need a point

and a tangent. We know the full velocity point is on
this line and we derived it in Eq. 3. We also know the
vector of the tangent of this segregating line, since it
is the direction the agent is facing at time rm

r′m
. The

non-unit vector version of this tangent can be found by
taking the velocity of the agent at time rm

r′m
using Eq. 1.

If we drop the scaling factor in Eq. 1 we have the unit
length tangent: tangent = (cos(rmr′m

· θ′m), sin(rmr′m
· θ′m)).

An orthogonal vector to this is (OrthX = − sin(rmr′m
·

θ′m), OrthY = cos(rmr′m
· θ′m)). Thus, the equation of the

segregating line running through the agent at time t =
rm
r′m

is:

− sin
(
θ′
m
·rm
r′
m

)
x+ cos

(
θ′
m
·rm
r′
m

)
y +

rmθ
′
m
−r′

m
sin

(
θ′m·rm
r′m

)
r′
m
θ′2
m

= 0

(4)

To determine if a point is a pre-velocity destination,

we can plug Dx and Dy into Eq. 4. If the result is less

than 0, we know that the point is a pre-velocity desti-

nation. Interestingly, this line does not guarantee that

points on the other side are post-velocity destinations

(as we discuss shortly). Additionally, the trajectory of

the agent forms a curve below this dividing line that

contains pre-velocity destinations. Using this segregat-

ing line, these points are incorrectly identified as post-

full velocity points. However, as all these points have

low Dθ and Dr, the arrival time to these points is low

and this mislabeling is inconsequential (see Section 4.4).

ArrivalT can be found by first finding whether the

destination is a pre- or a post-full velocity destination.

Once we know which type of destination we have, we

can use the appropriate equations to find arrival times.

We first describe how to find ArrivalT for post-full

velocity destinations and then for pre-full velocity des-

tinations.

4.2 Post-Full Velocity Destinations

If we know a destination is a post-full velocity desti-

nation, we know the agent will reach the full velocity

point before it transitions to the straight motion step

(see Sec. 3). Since it takes rm
r′m

time for the agent to reach

this point, we already know one part of the arrival time.

Once an agent reaches full velocity it stops acceler-

ating and continues at the same speed while turning.

Thus, the agent follows a perfect circle from the time

it reaches full velocity to the time it is looking directly

at its destination (see the dotted circle in Fig. 2). Find-

ing the point where the agent is looking directly at the

destination requires finding the equation for this cir-

cle and then finding the point on this circle where the

agent changes from the turning with velocity step to

the straight motion step. Since this is the point where

the agent leaves the perfect circle trajectory, we call

this the departure point.

To find the departure point, we first have to find

the circle the agent follows after it reaches full veloc-

ity. Since the agent reaches its full velocity at the full

velocity point, we know this point is on the circle. We

can calculate the radius of this circle since it takes 2·π
θ′m

seconds for an agent to turn 2π radians, in which time

the agent will go around this circle exactly once. Since

the time to go around the circle once is t = 2·π
θ′m

and

the agent’s velocity is v = rm, the agent will travel
2·π
θ′m
· rm = 2·π·rm

θ′m
meters if it followed this circle all

the way around. Thus, the circumference of the circle

is 2·π·rm
θ′m

. Using this, we can compute the radius of the

circle: 2·π·rm
θ′m

= 2 · πRadius. It follows that R = rm
θ′m

.

We can find the center of this circle by moving in
the opposite direction of (OrthX,OrthY) a distance of
R starting from the full velocity point. Thus, the center
of the circle (CCX,CCY) in terms of equation Eq. 3

Optimal Acceleration Thresholds for Nonholonomic Agents 5

is:

CCX = FV X +OrthX ·R and CCY = FV Y +OrthY ·R
(5)

We can now find the exact departure point since the

destination, circle center, and departure point form a

right triangle. The hypotenuse of the triangle runs from

the destination to the circle center. Using this informa-

tion we can find the angle between the vectors run-

ning from the destination to the circle center and de-

parture point AngleDepDestCC. The angle from the

destination the center of the circle, AngleDestCC is

trivial to find. Using these we can find the angle of the

vector running from the circle center to the departure

point, AngleDep = ASin(Radius/DistDestCC) +

AngleDepDestCC.

Finding the departure point is a matter of finding

the distance from the destination to the departure point

DistDestDep and using that to find the exact loca-

tion of the departure point (DPX,DPY). The points

are DPX = cos(AngleDep) ·DistDestDep+DX and

DPY = sin(AngleDep) ·DistDestDep+DY .
Now that we have the location of the departure

point we can find how long the agent is on the circle.
We do this by taking the angles from the circle center to
the full velocity point and then from the circle center to
the departure point. The angle difference between these
over 2π will give us the percentage of the circumference
that the agent follows between the full velocity point
and the departure point. We call this time TCircle. To
find the time the agent spends on the straight motion
step we take the distance from the departure point to
the destination we found earlier (DistDestDep) and
divide by rm: TDest = DistDestDep/rm. Combining
rm
r′m

, TCircle and TDepDest gives us the total time to

reach the post-full velocity destination. More Formally:

ATPost(π,Dx, Dy, rm, r′m, θ
′
m) = rm

r′
m

+ TCircle+ TDepDest

(6)

Notice that the trajectory from the full velocity point

to the destination is composed of straight lines and cir-

cles. This Dubins path (see Sec. 2) is expected since the

agent’s velocity does not change between these points.

4.3 Pre-Full Velocity Destinations

Thus far we have talked about how to find ATPost, or

the time required for an agent to reach its post-full

velocity destination where at = π. Now we address the

issue of reaching pre-full velocity destinations.
By definition, pre-full velocity paths are composed

of two parts. In the first part the agent turns while ac-
celerating. In the second part the agent heads straight
while accelerating with the possibility of continuing
straight at maximum speed. The key to deriving these
paths and their lengths lies in finding the transition

point between the turning portion and the straight por-
tion. In order to find this transition point, we need to
find the time when the angle of the vector running from
the agent to the destination has the same heading as
the agent. The heading of the agent at time t is simply
t ·θ′m. The angle of the vector running from the agent at

time t to the destination is: Tan(
Dy−y(t)
Dx−x(t)) where x(t)

and y(t) are defined in Eq. 2. Thus, we can find the
transition point if we can solve the following for t

θ(t) = Tan

 Dy−
(

sin(θ′m·t)
θ′2m

− t·cos(θ′m·t)
θ′m

)
Dx−

(
cos(θ′m·t)

θ′2m
+
t·sin(θ′m·t)

θ′m
− 1

θ′2m

)
 (7)

There is no analytical solution to this equation and the
Taylor Series approximation has too much error to be
useful. However, we can reframe the problem to signifi-
cantly reduce the error. Instead of thinking of an agent
moving towards its destination over time, we think of
the destination moving around and toward the agent
over time. This frame of reference is best defined us-
ing polar coordinates where the polar coordinates give
the distance and angle offset to the destination. In this
frame of reference, the agent will look at its destina-
tion when the y coordinate of the destination is 0. We
can define the evolution of the destination’s position us-
ing differential equations as follows, with ∆ being the
timestep:

Dr(0) = Dr and Dθ(0) = Dθ
Dr(t) = Dr(t−∆)− r′m ·∆
Dθ(t) = Dθ(t−∆)− θ′m ·∆

(8)

Converting Eq. 8 to Euclidean values, the y value of
the rotating destination with respect to time is:

r′m · t · θ′m +Dy · θ′2m cos(t · θ′m)− (r′m +Dx · θ′2m) sin(t · θ′m)

(9)

There is no analytical way of finding t when Eq. 9
equals 0. However, if we replace the Sine and Co-
sine functions in Eq. 9 with their second-degree Taylor
Series approximations, Eq. 9 becomes tractable (Sec-
tion 4.4 shows that the error of this and our other
equations is minute). The new function with the Taylor
Series approximations is:

r′m · t · θ′m − t · θ′m(r′m +Dxθ′2m) +Dyθ′2m(1− t2·θ′2
m

2
) (10)

Solving for t = 0, we know a pre-full velocity agent will
look at its destination when t = TStraight:

TStraight =
−Dx · θ′m +

√
D2
x · θ′2m + 2Dy2θ′2m

Dyθ′2m
(11)

Starting from here, we can find the total time for the
agent to reach the destination. Eq. 11 gives us the time
for the agent to look at is destination. It is a simple
matter of integrating to find the agent’s location at the
point, and hence the remaining distance to be traveled.
The total time therefore becomes the time from Eq. 11
plus the remaining time the agent travels straight to-
ward its destination (which we call RT). Combined, we
can find the arrival time for an agent with a pre-full
velocity destination:

ATPre(π,Dx, Dy, rm, r′m, θ
′
m) = TStraight+RT (12)

6 Brian C. Ricks, Parris K. Egbert

We now have the equations for deriving ArrivalT

where at = π for any destination. If a destination is

a post-full velocity destination, the equations outlined

in Sec. 4.2 will give the arrival time of an agent. If a

destination is a pre-full velocity destination, the equa-

tions outlined in Sec. 4.3 will give the arrival time of

the agent. If the destination in unreachable, ArrivalT

returns +∞.
We can combine Eq. 6 and Eq. 12 to get the full

definition of ArrivalT where at = π. For this equation
we introduce a new function Pre : x, y → true, false
which returns true if the destination is to the right of
the segregating line defined in Eq. 4 and false oth-
erwise. We also define a new function Post : x, y →
true, false that returns true if a destination is to the
left of the segregating line defined in Eq. 4 and not in
the unreachable area defined in Eq. 5.

ArrivalT (π,Dx, Dy, rm, r′m, θ
′
m) =

ATPre(π,Dx, Dy, rm, r′m, θ
′
m), if Pre(Dx, Dy)

ATPost(π,Dx, Dy, rm, r′m, θ
′
m), if Post(Dx, Dy)

+∞, otherwise

(13)

4.4 Validation and Error Analysis

In order to define ArrivalT with at = π, we broke

down destinations into two sets, pre-full velocity des-

tinations and post-full velocity destinations. For the

post-full velocity destinations we were able to derive

arrival time analytically. For pre-full velocity destina-

tions, we derived the formula for when the agent sees

its destination using a Taylor Series approximation. To

verify our equations and claims of low error, we com-

pared our equations for agent arrival time ArrivalT to

actual simulations of nonholonomic agent movement.

In doing so we show that there is almost no error and

that the simulation converges to our equations as the

simulation’s timestep converges to 0.

Fig. 3 shows the surface ArrivalT with at = π

across a large set of destinations. Notice that this sur-

face has several key features we would expect. First,

arrival times grow as destinations move away from the

origin. We would expect this since destinations further

from the origin will take longer to reach. Second, the

surface is almost radially symmetric, but not quite. You

can tell by counting contour lines that destinations with

higher Dθ values take longer to reach. We expect this

since these destinations require the agent to turn in

order to reach them, thus increasing the arrival time.

Third, there are no seams or jumps as our equations

change from using the post-full velocity equations and

pre-full velocity equations. This is because the equa-

tions are accurate enough that slight changes in the des-

tination around the segregating line in Eq. 4 do not cre-

Fig. 3 Plot of how long it will take an agent (rm = r′m =
θ′m = 1) to arrive at different destinations when at = π. The
x and y axes correspond to the x and y values of destinations.
The height of the curve shows time required to reach desti-
nations. Contour lines are placed every 1s on the surface to
help discern the surface’s height.

ate any perceptible change the calculated arrival time.

Note also that there is a gap in the surface to the left of

the origin. This corresponds to the unreachable circle

shown in Fig. 2. Since agents cannot reach these points

when at = π, they have an infinite arrival time and are

culled from the surface.

For a quantitative validation of ArrivalT with at =

π, we generated a similar arrival time surface using the

agent simulator from our crowd simulation algorithm.

This simulator took time steps, moving the agent for-

ward based on its current linear velocity and heading,

and then updating the heading to turn toward the des-

tination. The simulator continued to take steps until

the agent came within a small threshold of the destina-

tion, at which time it reported the accumulated time.

The closer the results of these simulations were similar

to those predicted by ArrivalT , the more accurate we

knew our equations were.

Fig. 4 Difference between arrival times calculated using
ArrivalT with at = π and simulation using 3,300 samples.
We used a timestep of .1 in this test. The average difference
was a minimal -.0015 seconds.

Fig. 4 shows the error difference between our calcu-

lated surface using ArrivalT and our simulated agent

with a timestep of .1s. The average difference between

calculated and simulated arrival times was -.0015s.

while the average arrival time for the samples on our

surface was 8.93s. Thus, the average difference was only

1/5953 the size of our average arrival time.

Optimal Acceleration Thresholds for Nonholonomic Agents 7

Note also that when we run a discrete simulation, it

is almost impossible for the agent to arrive exactly at

the destination. In the simulation we treat the destina-

tion as a circle with a radius of the timestep times rm.

Thus, in this error analysis, we would expect the sim-

ulated arrival times of an agent to a destination to be

within ±.1 seconds of the true arrival time. Note that

in over 99% of the comparisons in Fig. 4 the difference

between our calculated arrival time and the simulated

arrival time was within this ±.1s threshold. Also, al-

most 98% of the comparisons are within half of that

threshold. This result gives further evidence that our

derivation of ArrivalT is highly accurate.

We further looked at the error as the timestep de-

creases. Since many of our equations find the exact ar-

rival time of an agent, we would expect the difference

between our equations and simulated arrival times to

decrease as the simulation time step approaches one

over infinity. Fig. 5 shows this difference as the sim-

ulation timestep approaches 0. Notice that the error

decreases exponentially as expected, or approximately

linearly on a log scale.

Fig. 5 Log of absolute average difference between ArrivalT
and simulated arrival times of agents as the timestep of the
simulated agents decreases exponentially. Over 3,300 samples
were used in each comparison. We would expect this error to
drop to zero as the timestep approaches zero, which it appears
to do.

5 Arbitrary Angle Thresholds

We have derived ArrivalT for an agent where at = π.

We can now use this to derive the solution for ArrivalT

for arbitrary values of at.

Recall from our section on definitions (Sec. 3) that

the movement of agents can be broken down into three

steps: the turn in place, the turn with velocity, and the

straight motion steps. When at = π, agents skip the

turn in place step since all destinations have a Dθ ≤
at = π. For most destinations, however, the optimal

acceleration angle threshold is not at = π. Thus we

need to expand our solution to ArrivalT to include all

values of at before we can solve BestAT .

Fig. 6 How destinations with Dθ > π/2 rotate during the
turn in place step when at = π/2. Notice that this changes
which destinations are reachable when compared to at = π.

Consider an agent whose acceleration angle thresh-

old is π/2. For all destinations where Dθ < π/2, the

path of the agent to the destination would be the same

as an agent with an acceleration angle threshold of π

since in both cases Dθ falls underneath these thresh-

olds. The only difference is how the agent reaches des-

tinations with Dθ > π/2. In these cases the at = π/2

agent would turn in place until the difference between

its heading and the destination is π/2. It would then

proceed to the turn with velocity step.

When at = π/2, an agent would turn until destina-

tions with Dθ > π/2 are π/2 radians away. For simplic-

ity, we can think about the destination rotating about

the agent instead of the agent rotating in place. Fig. 6

shows how these destinations would rotate. Notice that

some destinations that were unreachable to an agent

with at = π are reachable to an agent with at = π/2

agent and vice versa. Once the destination has been

rotated, the agent proceeds as if at = π.
After rotating destinations, we can use ArrivalT

with at = π as the key component of our solution to
ArrivalT for any at. First, if Dθ > at, we rotate des-
tinations about the origin until they have a polar an-
gle of at. We then proceed as if the acceleration angle
threshold were π, using the newly rotated destination.
Formally:

ArrivalT : at,Dx, Dy, rm, r′m, θ
′
m → T ime

DestATDiff = Dθ − at

TurnT ime =

{
(Dθ − at)/θ′m, if DestATDiff > 0

0, otherwise

D′x =

{
cos(at)Dr, if DestATDiff > 0

Dx, otherwise

D′y =

{
sin(at)Dr, if DestATDiff > 0

Dy, otherwise

RemainingT ime = ArrivalT (π,D′x, D
′
y, rm, r

′
m, θ

′
m)

T ime = TurnT ime+RemainingT ime

(14)

Eq. 14 satisfies our first main contribution (see Sec.

1): we have derived the arrival time for a nonholonomic

agent to any destination with arbitrary movement con-

straints. This gives us the mathematical background to

find BestAT , or the best acceleration angle threshold

for a given destination.

8 Brian C. Ricks, Parris K. Egbert

Additionally, this equation gives us the exact path

of a nonholonomic agent without any simulation. By

using these integrals and equations, we can derive the

exact location of an agent at any time. This is an

important contribution since it allows applications of

nonholonomic agents to analytically check for collisions

without doing any relatively expensive discrete simula-

tion. We discuss this further in our future work section

(Sec. 7).

6 Optimal Angle Thresholds

The primary goal of this work is to find optimal paths

for nonholonomic agents without doing simulation. We

do this by deriving a function BestAT that finds the op-

timal acceleration angle threshold for an agent in terms

of its arrival time. In the previous section we arrived at

a definition of ArrivalT , the function that gives the ar-

rival time for any acceleration angle threshold. In this

section we use ArrivalT to find a low error, functional

approximation to BestAT . First, note that given a des-

tination with a polar angle of Dθ, all angle thresholds

whose values are greater than Dθ will produce the same

path since the agents will all immediately start accel-

erating while turning. Thus, if the best angle threshold

for a destination is Dθ, BestAT could return any value

in the range [Dθ, π]. For clarity and to make BestAT

a clearly defined function, we say that BestAT never

returns an angle higher than Dθ.

Since we have a definition of ArrivalT , we can do

offline computation to find the numeric approximation

of the decision surface for finding the best accelera-

tion angle threshold for a set of destinations. To do

this, we iterate across a dense set of destinations in the

area x ∈ [−10, 10], y ∈ [0, 10]. For each destination we

then iterate across acceleration angle thresholds, start-

ing with 0 and ending at Dθ. This process returns the

best acceleration angle threshold for each sample in our

area, which we show in Fig. 7. Similar surfaces can

be shown for other values of rm, r
′
m, and θ′m. Areas

of this surface where BestAT = Dθ are highlighted in

green. Notice that this decision surface is not perfectly

flat, i.e., there is no one, hard-coded acceleration an-

gle threshold that will result in the best arrival time

for all destinations. This again validates our assertion

that finding optimal paths for nonholonomic agents is

non-trivial.

Unfortunately, this numerical approach to finding

the optimal acceleration angle threshold for a given

destination is computationally expensive and will not

work in real-time as a way of choosing paths. Instead,

we found a functional approximation of BestAT that

will produce this same decision surface.

Fig. 7 BestAT , or the optimal acceleration angle decision
surface (rm, r′m, and θ′m=1). This surface has two distinct
regions: one where BestAT equals Dθ (the plateau region,
highlighted green) and the sub-plateau region, where the con-
tour lines form circles.

One approach to finding BestAT would be to take

Eq. 14 and find its derivative with respect to at. The

zero-crossings of the derivatives that correspond to local

minima would determine which angle thresholds pro-

duce the shortest arrival times. Eq. 14 is composed of

a series of closed form equations, so we were able to

find the derivatives for each branch case using a com-

putational mathematics package. Unfortunately, the re-

sulting derivatives are so long that we estimate that

transcribing them into this paper would take approxi-

mately 10 pages. In addition, these derivatives do not

have closed-form solutions for their zero-crossings. We

therefore have derived a functional approximation to

BestAT based on empirical observation.

6.1 Plateau Region

Based on our observations, we have found several key

features of this surface that hold regardless of the un-

derlying values of rm, r
′
m, and θ′m. We leave it to future

work to show mathematically that these features are

true for all values of rm, r
′
m, and θ′m.

The primary features of this set of curves

are best described using the polar definition

of destinations (Dr, Dθ). Using this polar form

of the BestAT function, we have observed

that ∀rg > r,BestAT (rg, Dθ, rm, r
′
m, θ

′
m) >=

BestAT (r,Dθrm, r
′
m, θ

′
m). In other words, for a

fixed destination angle, the optimal acceleration angle

threshold monotonically increases as the polar radius of

the destination increases. At some radius, the optimal

acceleration angle threshold will reach Dθ, which is the

maximum acceleration angle threshold that an agent

can choose, and all values of BestAT for radii after

that point will all have the same value (Dθ). Thus, the

optimal acceleration angle threshold always reaches a

plateau. We call the minimum polar radius for which

destinations of a given polar angle have an optimal

acceleration angle threshold of Dθ the plateau point, or

simply plateau. Fig. 7 shows BestAT with the plateau

region highlighted in green.

Optimal Acceleration Thresholds for Nonholonomic Agents 9

Fig. 8 Plot of Dθ vs. Dr of the plateau points the define the
plateau region in Fig. 7. These points are key to our functional
approximation to BestAT .

Our second observation is that the polar radius

grows monotonically as the polar angle increases. The

highlighted region in Fig. 7 gives evidence of this ob-

servation.

The location of these plateau points is key to ap-

proximating BestAT . Once we have a function for find-

ing the radius of a plateau point given a radius, we can

define half of the optimal acceleration angle threshold

decision surface precisely. This is true since we know

that any destination point whose Dr is greater than

that of the plateau point will always have an optimal

acceleration angle threshold of Dθ. As noted earlier, the

derivative of Eq. 14 is too unwieldy to provide guidance

as to where these points are. Instead, we have numer-

ically found plateau point pairs (r, θ) for set values of

rm, r
′
m, and θ′m. We then did a curve fit across these

points to find an approximation to where these plateau

points are located.
For example, consider the case where rm, r

′
m, and θ′m

all equal 1, which have been the movement constraints
we have used in all our figures. Fitting a fifth-degree
polynomial to the plateau points in Fig. 8, we get:

−4.68 + 30.72Dθ − 73.08D2
θ + 84D3

θ − 45.23D4
θ + 9.26D5

θ

(15)

To find the optimal acceleration angle threshold for a

destination (Dr, Dθ), we plug Dθ into Eq. 15 to get the

plateau point for this angle. If Dr is greater than or

equal to the value returned by Eq. 15, then we know

the optimal acceleration angle threshold is Dθ.

6.2 Sub-Plateau Region

We call the region of surface where the polar radius

is less than the plateau point the sub-plateau region.

Again, we return to our observations of surfaces with

different rm, r
′
m, and θ′m values with an example shown

in Fig. 7. Notice that in the sub-plateau region, the con-

tour lines on the surface form perfect circles. In other

words, if we find the optimal acceleration angle thresh-

old for a point not on the plateau region, all destinations

with the same Dr and higher Dθs will have the same

optimal acceleration angle threshold. This optimal ac-

celeration threshold value is the value of the plateau

point whose radius is Dr. Another way to think about

this is that each plateau point “gives” its value to all

destinations whose Dr is the same and whose Dθ is

greater. This results in the perfectly circular contour

lines on the optimal acceleration angle threshold sur-

faces. More formally if BestAT (r,Dθ, rm, r
′
m, θ

′
m) <

Dθ (i.e. the pair (Dr, Dθ) is not in the plateau

region), then ∀θ > Dθ, BestAT (r, θ, rm, r
′
m, θ

′
m) =

BestAT (r,Dθ, rm, r
′
m, θ

′
m).

Thus, in order to find the optimal acceleration an-
gle threshold for a destination in the sub-plateau region,
we can find its value by rotating around the origin until
we find the plateau point whose radius matches the cur-
rent Dθ. We could do this by incrementally decreasing
Dθ and checking for plateau points, but it is easier to
simply invert the plateau point function (e.g. Eq. 15).
Based on our second observation above (that the radius
of plateau points increase monotonically with their an-
gles), we know that we can invert these functions. Re-
turning to the case where rm, r

′
m, θ

′
m all equal 1, the

fifth-degree polynomial fit to the points is:

0.12 + 1.18Dr − 0.31D2
r + 0.041D3

r − 0.002D4
r + 0.00006D5

r

(16)

Thus, given a destination (Dr, Dθ), our functional
approximation to BestAT is:

P = PlateauPoint(Dr, Dθ)

SP = SubP lateauPoint(Dr, Dθ)

BestAT (Dr, Dθ) =

{
Dθ, if Dr ≥ P
SP, otherwise

(17)

This approximate functional solution to BestAT

has very low error. The drawback is that it requires

fitting a fifth-degree polynomial to the plateau points

for different values of rm, r
′
m, and θ′m. Fortunately, in

most virtual agent applications there is a limited set of

possibilities for rm, r
′
m, and θ′m. Thus, if these fits are

done offline, a simulation algorithm can quickly approx-

imate BestAT using this baked information.

6.3 Error

We quantitatively validate our functional approxima-

tion to BestAT in Eq. 17 by comparing our calculated

decision surface to the one we generated numerically

(Fig. 7). To generate the numerical surface we iterated

over thousands of possible at values across 3,300 pos-

sible destinations. These destinations were in the polar

region Dr ∈ [.38, 12], Dθ ∈ [0, π] to avoid numerical

issues close to the origin.

10 Brian C. Ricks, Parris K. Egbert

Fig. 9 Distribution of error (in radians) between the numer-
ical solution to BestAT and our approximation from Eq. 17.

The average error was .009 radians with a standard

deviation of .017 (see Fig. 9). Note that .009 radians is

less than half a percent of π/2. This low error gives us

high confidence in our approach.

7 Conclusion and Future Work

In this paper we derived the arrival time of nonholo-

nomic agents to arbitrary destinations with arbitrary

movement constraints. We also showed how to find the

location of an agent at any time without having to do

any discrete simulation. We also derived a numerical,

offline method for finding the best arrival time surface.

We analyzed this surface and showed how to define this

surface with two curves for use in realtime applications.

This means that any application that uses nonholo-

nomic virtual agents can quickly find optimal paths for

agents that start with no velocity.

Our future work is focused in several areas. First,

we want to solve these equations for arbitrary start-

ing velocities. Second, we want to see how this affects

crowd simulation since we can find precise ideal paths

to destinations. This could could lead to reduced arrival

times for crowd simulation agents.

References

1. Arechavaleta, G., Laumond, J.P., Hicheur, H., Berthoz,
A.: Optimizing principles underlying the shape of trajec-
tories in goal oriented locomotion for humans. Humanoid
Robots, 2006 6th IEEE-RAS International Conference on
pp. 131–136 (2006)

2. Arechavaleta, G., Laumond, J.P., Hicheur, H., Berthoz,
A.: An optimality principle governing human walking.
Robotics, IEEE Transactions on 24(1), 5–14 (2008)

3. Van den Berg, J., Lin, M., Manocha, D.: Reciprocal
velocity obstacles for real-time multi-agent navigation.
Proceedings of Robotics and Automation pp. 1928–1935
(2008)

4. Cockayne, E., Hall, G.: Plane motion of a particle subject
to curvature constraints. SIAM Journal on Control 13(1),
197–220 (1975)

5. Dubins, L.E.: On curves of minimal length with a con-
straint on average curvature, and with prescribed initial
and terminal positions and tangents. American Journal
of mathematics 79(3), 497–516 (1957)

6. Fiorini, P., Shiller, Z.: Motion planning in dynamic en-
vironments using velocity obstacles. The International
Journal of Robotics Research 17(7), 760 (1998)

7. Harris, C.M., Wolpert, D.M.: Signal-dependent noise de-
termines motor planning. Nature 394(6695), 780–784
(1998)

8. Helbing, D., Molnar, P.: Social force model for pedestrian
dynamics. Physical Review 51(5), 4282–4286 (1995)

9. Hicheur, H., Pham, Q.C., Arechavaleta, G., Laumond,
J.P., Berthoz, A.: The formation of trajectories during
goal-oriented locomotion in humans. i. a stereotyped be-
haviour. European Journal of Neuroscience 26(8), 2376–
2390 (2007)

10. Lacquaniti, F., Terzuolo, C., Viviani, P.: The law relating
the kinematic and figural aspects of drawing movements.
Acta psychologica 54(1), 115–130 (1983)

11. Ondřej, J., Pettré, J., Olivier, A., Donikian, S.: A
synthetic-vision based steering approach for crowd sim-
ulation. ACM Transactions on Graphics (TOG) 29(4),
123:1–123:9 (2010)

12. Reynolds, C.: Flocks, herds and schools: A distributed be-
havioral model. Proceedings of ACM SIGGRAPH Com-
puter Graphics 21(4), 25–34 (1987)

13. Soueres, P., Laumond, J.P.: Shortest paths synthesis for
a car-like robot. Automatic Control, IEEE Transactions
on 41(5), 672–688 (1996)

14. Thalmann, D., Musse, S.R.: Crowd simulation. Wiley
Online Library (2007)

15. Todorov, E., Jordan, M.I.: Smoothness maximization
along a predefined path accurately predicts the speed
profiles of complex arm movements. Journal of Neuro-
physiology 80(2), 696–714 (1998)

